Understanding the Basics of Clinical Microbiology.

RYAN W. STEVENS, PHARM.D., BCPS
INFECTIOUS DISEASES CLINICAL PHARMACY SPECIALIST
PROVIDENCE ALASKA MEDICAL CENTER
Disclosures:

- None
Objectives:

1. Describe the utility of laboratory testing/chemistries in the workup of infection.
2. Describe general microbiologic culture and susceptibility methods and their associated time courses.
3. Describe some forms of rapid diagnostic testing (RDTs)
Learning Assessment:

1. T/F – Elevations in inflammatory biomarkers including (ESR, CRP, PCT, and WBC) indicate the presence of an infectious condition.

2. Which of the following is a catalase positive, coagulase positive, latex positive GPC?
 - Staphylococcus aureus
 - Streptococcus pyogenes
 - Staphylococcus epidermidis
 - Streptococcus pneumoniae

3. Which susceptibility testing method provides a formal MIC? (circle all that apply)
 - Broth microdilution (BMD)
 - Epsilometer test (E-test)
 - Kirby-Bauer disk diffusion
70 y/o female found down in her assisted living facility (ALF). Nurse at ALF notes patient complaining vaguely of “malaise” and appeared to be slightly more confused for 1-2 days prior to being found down.

She is intubated in the ED for hypoxia and inability to protect airway.

PMH: Diabetes, dementia, CVA, hypertension, hyperlipidemia, COPD, CHF, and history pneumonia (5 months prior).

Physical exam:

- Gen: intubated obese white female
- Neuro: Not responsive to voice or touch, passive movement of all extremities
- ENMT: NG, Endotracheal tube in place
- Resp: Lungs with crackles bilaterally
- CV: Hypotensive (starting norepi), tachycardic, no murmers
- GI: Distended with present bowel sounds
- GU: Foley in place
- Musculo: No edema
- Skin: open wound to left calf (chronic appearing – venous stasis ulcer) with surrounding erythema
Vitals from ED: Temp 101.8, BP 90/55 (non-responsive to 2L NS), Pulse 113, RR 32, O₂ Saturation = 82% on 10 L NC

Labs: WBC 27 (34% bands), SCr 2.3 (baseline 1.15), H/H 9.5/28.1, plts 225, lactate 5.5, CRP 225, ESR 12, and Procalcitonin 9.1.

- UA: 4+ Leukocyte esterase, 2+ bacteria, >150 wbc, nitrite positive, 0 RBC, and hazy brown

Imaging:
- CXR: Bibasilar infiltrates vs. atelectasis (R>L), cannot exclude pneumonia

Cultures:
- Blood (peripheral): Pending
- Urine (foley): Pending
- Respiratory (Endotracheal aspirate): Pending
Why do we think she is infected?

Clinical Presentation!

1. Constellation of symptoms → Septic Shock
 - Hypotension (not responsive to fluids → vasopressor dependent)
 - Tachycardia
 - Fever
 - Leukocytosis
 - End organ damage: Altered mental status and elevated SCr

2. Imaging:
 - CXR with ? Pneumonia

3. Non-specific labs:
 - WBC (bands)
 - Lactate
 - Pro-inflammatory markers: CRP, ESR, Procalcitonin
 - Positive UA?
Non-specific Lab Tests: \(^1,2\)

- There is NO single definitive test for identification of infection!
 - i.e. All have limitations
 - Always should be paired with clinical presentation.

- Examples:
 - White Blood Cell (WBC) Count:
 - Elevate in response to infection
 - Also elevate in response to: Drugs (i.e. steroids), stress, inflammation, etc.
 - Bands = immature neutrophils
 - “Left Shift”: >9% bands
 - Lactate:
 - Demonstrates shift to anaerobic metabolism / illustrates tissue hypoperfusion
 - Elevates in response to shock, tissue ischemia, severe liver disease, and some medication (metformin)
Non-specific Lab Tests:¹⁻³

- CRP and ESR:
 - C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR):
 - Non-specific acute phase reactant (i.e. non-specific inflammatory marker)
 - Elevate vaguely in response to inflammation
 - Generally CRP reacts faster than ESR
 - Better for trending chronic infections vs. determining if infection present.
 - Erythrocyte sedimentation rate (ESR)
 - Non-specific inflammatory marker
 - Generally reacts slower than CRP

- Procalcitonin:
 - 116 amino acid precursor of calcitonin
 - More sensitive than CRP at detecting bacterial infection
 - Detectable in 2-4 hours / Peak = 8-24 hours / Half-life = 24 hours
 - Rises not impaired by neutropenia or immunosuppression
 - Most useful in community-acquired lower respiratory tract and sepsis
Non-specific Lab Tests:4,5

- **Urinalysis:**
 - Color and Clarity: Non-specific
 - Nitrites:
 - Reductase: Nitrates → Nitrites
 - Weakly sensitive/highly specific for the PRESENCE of bacteria.
 - Leukocyte Esterase:
 - Produced by neutrophils
 - Indicates pyuria
 - WBC: Grades the pyuria
 - Bacteria: May signal contamination, ASB, or infection
 - Squamous Epithelial Cells: May help determine quality of specimen.

<table>
<thead>
<tr>
<th>COLOR</th>
<th>Amber</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARITY</td>
<td>Cloudy</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.017</td>
</tr>
<tr>
<td>PH UA</td>
<td>5.0</td>
</tr>
<tr>
<td>GLUCOSE UA</td>
<td>1+</td>
</tr>
<tr>
<td>KETONES UA</td>
<td>Trace</td>
</tr>
<tr>
<td>PROTEIN UA</td>
<td>2+</td>
</tr>
<tr>
<td>BLOOD UA</td>
<td>3+</td>
</tr>
<tr>
<td>BILIRUBIN UA</td>
<td>Negative</td>
</tr>
<tr>
<td>NITRITE UA</td>
<td>Negative</td>
</tr>
<tr>
<td>UROBILINOGEN UA</td>
<td>Normal</td>
</tr>
<tr>
<td>ASCORBIC ACID UA</td>
<td>Negative</td>
</tr>
<tr>
<td>LEUKOCYTES ESTERASE UA</td>
<td>3+</td>
</tr>
<tr>
<td>WBC UA</td>
<td>20 - 50</td>
</tr>
<tr>
<td>RBC UA</td>
<td>50 - 100</td>
</tr>
<tr>
<td>SQUAMOUS EPITHELIAL UA</td>
<td>0 - 1</td>
</tr>
<tr>
<td>BACTERIA UA</td>
<td>1+</td>
</tr>
<tr>
<td>HYALINE CASTS UA</td>
<td>>20</td>
</tr>
<tr>
<td>GRANULAR CASTS UA</td>
<td>2 - 4</td>
</tr>
<tr>
<td>MUCUS UA</td>
<td>Present</td>
</tr>
</tbody>
</table>
Asymptomatic Bacteriuria (ASB):5

- No matter what Bear Grylls tells you... urine is not a sterile body fluid.

- A “dirty” UA or “pyuria” in the absence of symptoms is NOT an indication for antimicrobial therapy.

- Caveats:
 - Pregnancy
 - ASB during procedures which will compromise of urinary mucosa.

Table 2. Prevalence of asymptomatic bacteriuria in selected populations.

<table>
<thead>
<tr>
<th>Population</th>
<th>Prevalence, %</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy, premenopausal women</td>
<td>1.0–5.0</td>
<td>[31]</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>1.9–9.5</td>
<td>[31]</td>
</tr>
<tr>
<td>Postmenopausal women aged 50–70 years</td>
<td>2.8–8.6</td>
<td>[31]</td>
</tr>
<tr>
<td>Diabetic patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Women</td>
<td>9.0–27</td>
<td>[32]</td>
</tr>
<tr>
<td>- Men</td>
<td>0.7–11</td>
<td>[32]</td>
</tr>
<tr>
<td>Elderly persons in the communitya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Women</td>
<td>10.8–18</td>
<td>[31]</td>
</tr>
<tr>
<td>- Men</td>
<td>3.6–19</td>
<td>[31]</td>
</tr>
<tr>
<td>Elderly persons in a long-term care facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Women</td>
<td>25–50</td>
<td>[27]</td>
</tr>
<tr>
<td>- Men</td>
<td>15–40</td>
<td>[27]</td>
</tr>
<tr>
<td>Patients with spinal cord injuries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Intermittent catheter use</td>
<td>23–89</td>
<td>[33]</td>
</tr>
<tr>
<td>- Sphincterotomy and condom catheter in place</td>
<td>57</td>
<td>[34]</td>
</tr>
<tr>
<td>Patients undergoing hemodialysis</td>
<td>28</td>
<td>[28]</td>
</tr>
<tr>
<td>Patients with indwelling catheter use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Short-term</td>
<td>9–23</td>
<td>[35]</td>
</tr>
<tr>
<td>- Long-term</td>
<td>100</td>
<td>[22]</td>
</tr>
</tbody>
</table>

a Age, \(\geq\)70 years.
Cultures...the basics: 1,6-9

1. Only culture something...if you plan to use the culture to guide therapy.
 - May NOT always be necessary (i.e. uncomplicated CAP or perforated appendicitis)

2. Always culture PRIOR TO administration of antibiotics if possible.
 - Sepsis is the obvious exception
 - 7.6% increase in mortality for every hour antimicrobial therapy is delayed.

3. Take care to avoid contamination with patient’s usual flora.

4. Interpret cultures with a critical eye:
 - What source/type of culture was obtained?
 - What was the culture method?
 - What did the gram-stain/grouping show?
 - What grew?
 - Does what grew match the clinical suspicions?
 - What did susceptibilities show?
Culture Source/Type:

- **Source:**
 - Blood
 - Wound, bone, tissue, abscess
 - CSF
 - Respiratory
 - Stool
 - Urine
 - Body fluid (pleural, ascites, etc.)

- **Type:**
 - Aerobic
 - Anaerobic
 - Fungal
 - Acid fast bacilli
Culture Source/Type:¹

- Some variance in microbiology processing:
 - BACTEC alert device
 - Blood
 - Gram-stain negative Body Fluids
 - Required additional processing:
 - Tissue
 - Bone
 - Straight to plate
 - Wound
 - Respiratory
 - Urine
 - Gram-stain positive
 - CSF
Culture Source/Type: 1,8-11

- Anticipate pathogen based on location of infection.
 - Skin and Soft Tissue Source:
 - Skin flora (Staphylococcus/Streptococcus)
 - Respiratory Source: *S. pneumoniae*, *M. catarrhalis*, *L. pneumophila*, *M. Pneumoniae*, *C. pneumoniae*, *H. influenzae*.
 - Hospital-acquired: MDRO gram-negative rods (including *P. aeruginosa*) and *S. aureus*
 - GI Source: *E. coli*, *Klebsiella spp.*, *B. fragilis*, *S. anginosus*, *Enterococcus spp.*
Culture Method: 10-14

- How was it collected?
- Is it a good specimen?
- Could it be contaminated?

General features:
- Look for presence of WBC
- Look for absence of squamous epithelial cells

Respiratory:
- Sputum (expectorated) vs. sputum (suction)
- Endotracheal aspirate vs. Bronchoalveolar lavage (BAL) vs. mini-BAL

Wounds:
- Purulent vs. Non-purulent
- Superficial swab vs. tissue/biopsy
- Chronic ulcer vs. acute wound

Blood:
- ? Contaminant
 - How many bottles of how many draws?
 - How long did it take to grow?
Culture Method:

- **Quantitative:**
 - Provides more robust estimate of number of organisms in a given culture.
 - Requires fluid specimen.
 - One mL of specimen is plated in plated and depending on growth on streak estimate made.
 - i.e. >100,000 cfu/mL

- **Semi-quantitative:**
 - Attempts to estimate the quantity of organisms in a given culture.
 - Cultures plated in one quadrant on plate.
 - Growth in primary quadrant = 1+
 - Extension characterized as 2+, 3+, and 4+

[Link to intranet.tdmu.edu.ua/data/cd/disk2/ch010.htm]
Gram Stains:¹

1. Specimen applied to slide
2. Crystal violet stain applied followed by iodine.
3. Alcohol decolorizing solution applied
4. Counterstain with safranin
5. Gram-negative: Red/Pink
6. Gram-positive: Purple in appearance
Gram Stains: \(^{16}\)

- **Grouping:**
- More relevant in gram positive cocci (GPC):
 - Staphylococcus spp. → GPC pairs, tetrads, and clusters
 - Streptococcus spp. / Enterococcus spp. :
 - Generally: GPC in chains
 - LONG chains → Beta-hemolytic strep or *S. viridans*
 - Diplococci and chains → *S. pneumoniae*

- What about... GPC pairs?
Gram Stains/Grouping:

[Diagram showing the classification of bacteria based on their staining properties and size.]

- **Gram-positive**
 - **Cocci**
 - **Clusters**
 - Staphylococcus
 - **Coagulase-positive**
 - Staphylococcus aureus
 - **Coagulase-negative**
 - Staphylococcus epidermidis
 - **Pairs (diplococci)**
 - Pneumococcus
 - **Streptococcus pneumoniae**
 - **Chains**
 - Streptococcus
 - **α-hemolytic**
 - Streptococcus pyogenes
 - **β-hemolytic**
 - Viridans Streptococcus
 - Strptococcus pneumoniae
 - **γ-hemolytic**

- **Gram-negative**
 - **Cocci**
 - Neisseria meningitidis
 - Neisseria gonorrhoeae
 - **Bacilli**
 - Lactose fermenter
 - Oxidase-positive
 - Achromobacter
 - Oxidase-negative
 - Pseudomonas aeruginosa
 - Serratia marcescens
 - Moraxella spp.
 - Non-lactose fermenter
 - Oxidase-positive
 - Pseudomonas aeruginosa
 - Rhodobacter spp.
 - Achromobacter spp.
 - Oxidase-negative
 - Pseudomonas aeruginosa
 - Pseudomonas putida
 - Pseudomonas aeruginosa

[Diagram continues with more detailed classifications and examples.]
Gram Stains:

16
Gram Stains x 2:

• Specimen received
• Initial gram stain (1-6 hours)
• Plated and grown (24-48 hours)
• Growth gram stain
• Organism identification (0-24 hours)
• Susceptibilities (18-24 hours)
Gram Stains ➔ Plate Growth:

Culture, Respiratory, Lower, Smear

Order Status: Completed
Specimen Information: Respiratory from Endotracheal Aspirate

Culture

Lab Status: Final result

Gram Stain Result

Result:
>25 per low power field: White blood cells, polymorphonuclear

Narrative:
Tracheostomy or Endotracheal tubes are followed by colonization within 24 hours of insertion, and results may not correlate with disease. Culture only if clinical pneumonia is present.

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Staphylococcus aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITEK</td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td><=0.25 ug/mL</td>
</tr>
<tr>
<td></td>
<td>Sensitive</td>
</tr>
<tr>
<td>Erythromycin</td>
<td><=0.25 ug/mL</td>
</tr>
<tr>
<td></td>
<td>Sensitive</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>0.5 ug/mL</td>
</tr>
<tr>
<td></td>
<td>Sensitive</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>>0.5 ug/mL</td>
</tr>
<tr>
<td></td>
<td>Resistant</td>
</tr>
<tr>
<td>Trimethoprim+Sulfamethoxazole</td>
<td><=10 ug/mL</td>
</tr>
<tr>
<td></td>
<td>Sensitive</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1 ug/mL</td>
</tr>
<tr>
<td></td>
<td>Sensitive</td>
</tr>
</tbody>
</table>

1 Oxacillin susceptible strains are susceptible to other anti-staphylococcal B-lactams (except amoxicillin, ampicillin, penicillin, piperacillin and ticarcillin).
Plate Growth:

- Identification...
 - ...what is taking so long?
- Pure plates vs. mixed plates
 - “re-isolating for more information”
- Poor vs. no plate growth plates
- Oddly behaving organisms
Plate Growth (GNR):
Plate Growth (GNR):¹⁷

- **Gram Negatives:**
 - **Lactose fermentation:**
 - Helps to distinguish between GNRs prior to formal ID.
 - Pseudomonas vs. other
 - **MacConkey agar:**
 - Inhibits gram-positive growth
 - Lactose Fermenting:
 - Lowers pH → red agar
 - Non-lactose fermenting:
 - Ammonia production raises pH → Clear/opaque agar

¹⁷ Local Reference 17
Plate Growth (GNR):17

\begin{itemize}
\item \textbf{Oxidase:}
\item Assesses for presence of cytochrome oxidase
\item Not produced by Enterobacteriaceae
 \begin{itemize}
 \item Produced by pseudomonas
 \end{itemize}
\item Positive test = Purple stain
 \begin{itemize}
 \item i.e. agent is oxidized
 \end{itemize}
\item Negative test = Colorless
 \begin{itemize}
 \item i.e. agent remains reduced
 \end{itemize}
\end{itemize}

http://www.medical-labs.net/oxidase-test-1291/
Plate Growth (GPC):¹
Plate Growth (GPC):

- **Catalase:**
 - \(2\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + \text{H}_2\text{O}\)
 - \(\text{O}_2\) released as gas = bubbles
 - Differentiates staphylococcus from streptococcus
 - Staphylococcus = catalase positive
 - Streptococcus = catalase negative

[Image: http://4.bp.blogspot.com/-pGWy_YzoaD4/UZXnPopWsUI/AAAAAAAAAH0/nrnpu-kKufg/s1600/slide+catalase+test+results.jpg]
Plate Growth (GPC): 17

- **Catalase positive:**
 - **Latex agglutination:**
 - Antibody for *S. aureus* on latex beads
 - Latex positive = *S. aureus*
 - Latex negative = CoNS
 - **Coagulase:**
 - Converts fibrinogen to fibrin clot with help of plasma factors
 - *S. aureus* = positive
 - *S. epidermidis* and other CoNS = negative

- **Catalase negative:**
 - **Hemolysis:**
 - Does it growth cause hemolysis of blood agar
 - Alpha = green = partial hemolysis
 - *S. viridans*
 - *S. pneumonia*
 - Maybe *S. anginosus*
 - Beta = clear = full hemolysis
 - “Typeable” streptococcus
 - Group A, B, C, G
 - Gamma = red = no hemolysis
 - Enterococcus spp. (PYR)
 - Maybe *S. anginosus*
Organism Identification:

- Specimen received
- Initial gram stain (1-6 hours)
- Plated and grown (24-48 hours)
- Growth gram stain
- Organism identification (0-24 hours)
- Susceptibilities (18-24 hours)
Organism Identification:

- VITEK vs. Microscan vs. Phoenix

- PAMC = VITEK2
 - Performs both:
 - Organism identification
 - Susceptibilities
 - Automated broth microdilution (BMD)
 - We will come back to this!
Organism ID vs. Clinical Suspicion:

- Culture Source
- Method of Collection
- Suspicion for Contamination
 - Gram stains

- Growth
- Organism ID

- Presence of Usual flora?
- Odd organism for culture source?
- Growth that doesn’t match the initial gram stain?
- Initial gram stain that doesn’t match the growth?
Susceptibilities:

• Specimen received
• Initial gram stain (1-6 hours)
• Plated and grown (24-48 hours)
• Growth gram stain
• Organism identification (0-24 hours)
• Susceptibilities (18-24 hours)
Susceptibilities:¹

Quantitative Results:
- Susceptible
- Intermediate
- Resistant

Qualitative Results:
- Driven by MIC
- Actual determinant behind quantitative results
- Multiple methods (BMD vs. KB vs. E-test)

Valuable...but sometimes hard to interpret.

User friendly...but perhaps oversimplified.
“Semi” -Qualitative Susceptibilities: 1

- Disk diffusion test (i.e. Kirby Bauer)
 - Grow bug \rightarrow Drop Disk \rightarrow Measure zone of inhibition
 - Susceptibility of organism is determined by “zone of inhibition”
 - Determined by CLSI standards
 - Varies depending on organism
 - Varies depending on drug
 - Generally:
 - Bigger zone of inhibition = more susceptible bug
 - Can perform multiple tests (up to 12) on same plate
 - Able to choose specific agents to test
 - Pros: Reliable, flexible, cheap, and simple
 - Cons: May be impacted by incubation temp or bacterial inoculum
Qualitative Susceptibilities:¹

- **Minimum Inhibitory Concentration:**
 - “The lowest antimicrobial concentration that prevents visible growth of an organism after ~24 hours of incubation in a specified growth medium”
 - Susceptibility breakpoints determined by CLSI
 - Traditionally
 - Macrotube dilution method vs. Solid agar
 - Labor intensive!
 - Present day:
 - Automated
 - VITEK2 vs. Microscan (turbidity) vs. Phoenix
 - Epsilometer Test (i.e. E-test)
 - Tells us the level of susceptibility of an organism rather than just the interpretation of that level.
 - E. coli: Piperacillin/tazobactam \(\leq 4\) vs. 32 mcg/mL
 - MRSA: Vancomycin <0.5 vs. 2 mcg/mL
Qualitative Susceptibilities:¹

- **Automated Broth Microdilution (BMD):**
 - Inoculate card ➔ Put in machine ➔ Wait
 - Tests organism to multiple concentrations of multiple drugs
 - Drugs in card determined by manufacturer or card selected.
 - Determines organism MIC to multiple agents in single test
 - Run time = 18-24 hours
 - Pros: Easy, reliable, provides formal MIC
 - Cons: Requires machine ($$$) and lacks flexibility in agent selection.
Qualitative Susceptibilities: 1,18

- Epsilometer test (i.e. E-test)
 - Grow bug \rightarrow Drop strip \rightarrow look for ellipse/strip intersection.
- E-Strip:
 - Single agent
 - Increasing concentrations
- One strip per plate.
 - Has been at times to be more accurate than automated broth microdilution
- Pros: Easy to perform, ? Easy to read, cheap
- Cons: One per plate, ? Easy to read
Susceptibilities:

Summary:

1. Do you have qualitative, quantitative, or both?
2. If qualitative, was it performed via BMD, E-test, or Kirby-Bauer?
3. If BMD or E-test, just how susceptible was the organism (i.e. what was the MIC)?

Select a therapy!

1. What is the narrowest spectrum agent that treats all presently identified organisms?
Rapid Diagnostic Testing: Sensitivity vs. Specificity

Varies depending on testing method and specific test

Sensitivity:
- If a person HAS the disease how often will the test be positive?
 - I.e.
 - 10 influenza patients present and are swabbed for EIA
 - Rapid flu swab (EIA) detects 5/10.
 - Sensitivity = 50%
- Rate of true positive vs. false negative.

Specificity:
- If a person does NOT HAVE the disease how often will the test be negative?
 - I.e.
 - 10 patients WITHOUT influenza present and are swabbed for EIA
 - Rapid flu swab (EIA) detects 2/10
 - Specificity = 80%
- Rate of true negative vs. false positive.
Rapid Diagnostic Testing (RDT):

- **Antibody testing:**
 - **Agglutination testing:**
 - Antibodies (polyclonal or monoclonal) attached to latex beads and specimen introduced.
 - If lattice structure forms then antigen is present (antibody-antigen complexes)
 - Typically tested from growth (not generally from direct specimen)
 - Ex: *S. aureus* from plate growth
 - **Enzyme immunoassay (EIA)/Enzyme-linked immunosorbent assay (ELISA):**
 - Antibody coated wells/trays → Specimen (antigen) introduced → Well washed out → Second antibody introduced → well washed out → coloring agent added.
 - Wells that change color = positive for antigen.
 - Typically tested direct from specimen
 - Ex: Influenza A and B, Ag EIA (i.e. rapid flu swab)
Rapid Diagnostic Testing (RDT): \(^1,\text{17}\)

- **Polymerase Chain Reaction (PCR / NAAT):**
 - Testing done directly from collection specimen
 - Target amplification system
 - Amplifies SMALL sections of DNA using DNA polymerase and short oligonucleotide primers for detection.
 - If more than one primer used = improved sensitivity (multiplex PCR)
 - Ex: Respiratory viral pathogen panel (BiofireTM)
 - Blood Culture Identification Panel (BCID)
 - GI Panel
 - Meningitis/Encephalitis Panel
 - C. diff, NAAT

- **16S rRNA:**
 - Looks for specific section of ribosomal RNA that helps to identify specific organisms in a specimen.
 - Draws on LARGE bank of known sequencing vs. specific testing on specific platform
 - Testing of direct specimen
Rapid Diagnostic Testing (RDT):17

- Mass Spectrometry:
 - Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)
 - Thin smear on metallic slide
 - Hit with pulses of laser
 - Desorbed and deionized particles then accelerated through electrostatic field and drifted through vacuum tube
 - Contact mass spectrometers detector
 - Different particles fly at different speeds which indicates the presence of components of specific organisms
 - Typically run off of organism growth
Rapid Diagnostic Testing (RDT): \(^{19}\)

- **Accelerate Diagnostics – Pheno\(^{TM}\)**
 - **Gel electro-filtration (GEF)**
 - Sample loaded into gel well that contains pores smaller than bacterial cells
 - Electric current applied which removes cellular debris to isolate/concentrate bacterial cells
 - **Electro-kinetic concentration (EKC)**
 - Cells are drawn to surface where analysis will take place by exposure to mild electric charge.
 - **FISH (Fluorescence in-site hybridization)**
 - Cells exposed to probes with fluorescent tags looking for specific nucleic acid sequences.
 - **Fast phenotypic susceptibility testing**
 - Cell exposed to single concentration of agent and time lapse imaging correlates growth patterns to MICs.
Patient Case: (HD1)

- **Blood:**
 - Drawn vial peripheral draw
 - Aerobic and anaerobic bottles drawn from 2 separate sites
 - In BACTEC and pending

- **Urine:**
 - Collected from foley
 - No gram-stain ordered
 - Plated and pending

- **Respiratory:**
 - Collected as endotracheal aspirate
 - Gram stain: 1+ usual respiratory flora (<10 WBC / 0 epithelial)
 - Plated and pending
Patient Case: (later on HD1)

- **Blood:**
 - 1/2 draws positive for gram-negative rods at 8 hours → plated
 - Collected from peripheral draw x 2 (aerobic and anaerobic on each)

- **Urine:**
 - Cultures currently pending
 - Collected from foley catheter

- **Respiratory:**
 - Cultures currently pending
 - Collected from ETA with initial gram stain (1+ URF, <10 WBC, 0 epithelial)
Patient Case: (HD2)

- **Blood:**
 - Growth of GNR on plates at 24 hours (lactose fermenter / oxidase negative)
 - Collected from peripheral draw x 2 (aerobic and anaerobic on each)

- **Urine:**
 - 40,000 cfu gram negative rods on plates at 24 hrs (lactose fermenter / oxidase negative)
 - Collected from foley (initial plate growth = >100,000 cfu GNR)

- **Respiratory:**
 - Plates growing 1+ usual respiratory flora (at 24 hours)
 - Collected from ETA with initial gram stain (1+ URF, <10 WBC, 0 epithelial)
Patient Case: (HD3)

- Blood:
 - E. coli identified as organism
- Urine:
 - E. coli identified as organism
- Respiratory:
 - Cultures “finaled” as 1+ “usual respiratory flora”
 - Collected from ETA with initial gram stain (1+ URF, <10 WBC, 0 epithelial)
Patient Case: (HD4)

Blood:
- E. coli identified as organism

Urine:
- E. coli identified as organism
Learning Assessment:

1. T/F – Elevations in inflammatory biomarkers including (ESR, CRP, PCT, and WBC) indicate the presence of an infectious condition.

2. Which of the following is a catalase positive, coagulase positive, latex positive GPC?
 - Staphylococcus aureus
 - Streptococcus pyogenes
 - Staphylococcus epidermidis
 - Streptococcus pneumoniae

3. Which susceptibility testing method provides a formal MIC? (circle all that apply)
 - Broth microdilution (BMD)
 - Epsilometer test (E-test)
 - Kirby-Bauer disk diffusion
References:

