Treatment and Screening of *H. pylori* Infection in Alaskan Populations

Matthew F. Deraedt, Pharm.D.
Lieutenant United States Public Health Service
Alaska Native Medical Center Pharmacy Practice PGY-1 Resident

Learning Objectives – Pharmacist

- Explain theories for the high prevalence of *H. pylori* infection in Alaskan populations.
- Discuss the risk factors for *H. pylori* infection, appropriate screening, and criteria for treatment.
- Outline the similarities and differences for *H. pylori* treatment using the current American College of Gastroenterology treatment guidelines and the Alaska Native Medical Center statewide guidelines.
- Differentiate post treatment testing methodologies and patient specific factors that predict *H. pylori* treatment success.

Learning Objectives – Technician

- Explain theories for the high prevalence of *H. pylori* infection in Alaskan populations.
- Discuss the common signs and symptoms associated with *H. pylori* infection.
- Recognize medication regimens for the treatment of *H. pylori* infection.

No conflicts of interest to disclose.

Pre-learning Assessment

Which of the following symptoms are considered alert symptoms?

a. early satiety
b. post prandial belching
c. unexplained weight loss
d. dyspepsia

Pre-learning Assessment

Which of the following Alaskan patients would be candidates for endoscopy and possible *H. pylori* treatment?

a. A 27 y/o male who presents with several weeks of dyspepsia secondary to eating
b. A 60 y/o male who has recent weight loss and complaints of dyspepsia
c. A 38 y/o male reports with several weeks of epigastric pain secondary eating
d. A 57 y/o female who has daily ibuprofen use for osteoarthritis and reports dyspepsia
Pre-learning Assessment

What specific factors influence the treatment of H. pylori treatment in Alaska versus the contiguous United States?

a. > 60% prevalence among patient populations
b. high rate of resistance
c. injudicious use of antimicrobials
d. crowded living considerations

Pre-learning Assessment

Which of the following are theories for the transmission of H. pylori?

a. fecal-oral
b. fomite associated
c. bodily fluids
d. oral-oral

H. pylori

- Genus Helicobacter
 - Gastric vs. Enterohepatic
- Helicobacter pylori
 - Microaerophilic
 - Gram negative
 - Morphology
 - Spiral shaped
 - Rod
 - Coccolith (viable?)
 - Highly motile

H. pylori

- Urease (+), Catalase (+), oxidase (+)
- Cryptic plasmids – not resistance associated
- Genetic heterogeneity
- Genetic rearrangement
- Rich G+C regions
- Lawn formation
- Poorly cultured

Koch’s Postulates – Theory Meets Practice

- Warren observed spiral bacteria in gastric biopsies
- Named them “Campylobacter like organisms”
- In 1985, Marshall ingested cultured bacteria and subsequently experienced gastritis
- Marshall and Warren awarded The Nobel Prize in Physiology and Medicine in 2005

Virulence Factors Mediate Pathogenesis

- Virulence factors
 - Adhesins
 - Exotoxins
 - Cytotoxins
H. pylori intracellular modulation

Presentation
- Dyspepsia
- Epigastric pain
 - Upper right or left quadrant
 - Worsens with eating
- Post-prandial belching
- Early satiety
- Nausea
- Reflux
 - Commonly associated with GERD

Alarm Symptoms

<table>
<thead>
<tr>
<th>Alarm Symptom</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>New onset dyspepsia</td>
<td>Epigastric pain of ≥ 60 y/o</td>
</tr>
<tr>
<td>GI bleeding</td>
<td>Hematemesis, melaena, hematochezia, occult blood in stool</td>
</tr>
<tr>
<td>Anorexia</td>
<td>Loss of appetite</td>
</tr>
<tr>
<td>Unexplained weight loss</td>
<td></td>
</tr>
<tr>
<td>Dysphagia</td>
<td>Difficulty swallowing</td>
</tr>
<tr>
<td>Odynophagia</td>
<td>Pain on swallowing</td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
</tr>
<tr>
<td>GI cancer in 1st degree relative</td>
<td></td>
</tr>
</tbody>
</table>

Implications of Non-treatment
- International Agency for Research on Cancer listed as a class I carcinogenic substance
- Peptic ulcer disease
- Chronic gastritis
- Mucosa-associated lymphoid tissue (MALT) lymphoma
- Adenocarcinoma of the stomach

Gastric Cancer Risk in Alaska Native Patients

- 5th most diagnosed cancer in AN
- Mortality rate is three times what is seen in contiguous U.S.
- Presence of anti-H. pylori antibodies in patients with gastric cancer demonstrated a 2.63-fold increase in odds of cancer ($P=0.01$).
Transmission...a work in progress

- Epidemiological data suggest oral-oral transmission or fecal-oral transmission
- Recent studies suggest an environmental reservoir
- Possible a combination?
- Environmental risk factors?

Transmission Hypothesis

- The fecal oral hypothesis
 - Contaminated water sources
 - H. pylori PCR studies
- Oral–Oral hypothesis
 - Supported by higher rate in cohabitation
- H. pylori may be linked to hepatitis A infection (HAV)
 - Conflicting studies

Water as a reservoir?

- In Japan, Fujimura et al. compared three groups with different drinking water sources
 - River water vs. ground water
 - Lower prevalence in ground water
 - Insufficient N
- Mazari-Hiriart et al. utilized 16S rRNA and cagA sequencing to comment on H. pylori presence in drinking water
 - Detected DNA 16S rRNA 44% of sources and cagA gene 14% samples
 - Positive PCR correlate to viable infectious matter?
- Further Studies conducted by Bockleman et al. unable to find positive PCR samples in water samples from Spain, Italy and Belgium.

Intermediate Hosts and Biofilm Formation

- Cellini et al. discovered a strain of H. pylori in zooplankton
 - Reports of isolates producing biofilms
 - Metabolically inactive
 - Possibly persist in protozoa
 - intermediate host
- Reports of clinical strains producing ordered biofilms
 - Biofilms demonstrated through SEM in gastric mucosa samples

Environmental Risk Factors

- Higher prevalence among infected family members
- Acquisition rates are higher during childhood in developing countries than developed countries
- Impoverished areas with overcrowding
- Variable infection rates between developed vs. developing world and geographical regions

Krueger et al.

- National Health and Nutritional Examination Survey
 - 1999 – 2000
- Examined for Environmental H. pylori risk factors weighted to represent the U.S. population
- Multivariable linear regression estimated an adjusted odds ratio and 95% confidence interval
Krueger et al. conclusions

- Participants < 20 years of age
 - Having well water (aOR 1.7, 95% CI 1.1–2.6) and living in a more crowded home (aOR 2.3, 95% CI 1.5–3.7)
 - Participants ≥ 20 years of age
- Adults in soil-related occupations had significantly higher odds of seropositivity compared to those in non-soil-related occupations (aOR 1.9, 95% CI 1.2–2.9)
- Exposures to both well water and occupationally related soil increased the effect size of adults’ odds of seropositivity compared to non-exposed adults (aOR 2.7, 95% CI 1.3–5.6)

High Risk Patients

- Risk factors agreed upon in the literature:
 - Low socioeconomic status
 - Increasing number of siblings
 - Infected parent – especially mother
 - Men
 - Alaska Native/American Indian

Application to Alaska Populations

- Crowded living conditions
- More time spent indoors
- Limited access to clean water
- Overuse of antibiotics in remote areas
- Access to specialty services

What else makes treatment of H. pylori unique in Alaska?

High prevalence in AI/AN

- Seropositivity
 - 40% worldwide for industrialized countries
 - 80% - 90% in developing nations
- Alaska Natives
 - 75% overall
 - Ranges 64 – 83%, dependent on region
 - Puts treated individuals at high risk for reinfection... more later

Rates of H. pylori infection in AN, 1980 - 1986
Diagnosis – Endoscopy

- Invasive
- Gold standard
- Multiple methods
 - Biopsy
 - Urea testing (no PPI)
 - Culture (rare)
 - Histology

Noninvasive Diagnosis

- Urea breath testing
 - Consume carbon isotope
- Stool antigen testing
- Serology (IgA and IgG ELISA)
- PCR
- 13C-urea assay

American College of Gastroenterology (ACG) Clinical Guidelines

To treat or not to treat...

All patients with a positive test for an active infection should be offered treatment (strong recommendation)

Strong Recommendations

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>Quality of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active peptic ulcer disease (PUD)</td>
<td>High</td>
</tr>
<tr>
<td>Past history of PUD (except if previously eradicated)</td>
<td>High</td>
</tr>
<tr>
<td>Mucosa-associated lymphoid tissue (MALT) lymphoma</td>
<td>Low</td>
</tr>
<tr>
<td>History of early gastric cancer resection</td>
<td>Low</td>
</tr>
<tr>
<td>Patients gastric biopsies should be evaluated as "H. pylori"</td>
<td>High</td>
</tr>
<tr>
<td>Patients with typical symptoms of GERD and a history of PUD – no testing recommended</td>
<td>High</td>
</tr>
<tr>
<td>Patients initiating chronic treatment with NSAIDs</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Conditional Recommendations

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>Quality of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 60 y/o uninvestigated dyspepsia w/o alarm symptoms</td>
<td>High for efficacy; Low for threshold</td>
</tr>
<tr>
<td>Taking long term low dose ASA</td>
<td>Moderate</td>
</tr>
<tr>
<td>Patients already taking long term NSAIDs</td>
<td>Low</td>
</tr>
<tr>
<td>Unexplained iron deficiency anemia</td>
<td>High</td>
</tr>
<tr>
<td>Idiopathic thrombocytopenic purpura (TTP)</td>
<td>Very low</td>
</tr>
</tbody>
</table>

ACG Suggested Treatment Regimens

Management of *H. pylori* in high prevalence artic regions

Figure 1: Summary of a triads of *H. pylori* management regimens.

Recommendations to follow

- Expert commentary
- Literature review:
 - RCTs and longitudinal cohort studies
 - Cross-sectional studies
- Three face to face meetings
- Clinical practice experience

ACG Guidelines

- Developed for countries where *H. pylori* infection < 1/3 of population
- Test-and-treat strategy
 - Modest benefit
 - Mixed results from RCT
- Endemic area’s defined as >60% prevalence

Why is treatment not indicated?

High reinfection rates post confirmed eradication

- Reinfection rates higher for urban and rural AI/AN (14.5% vs. 22.1%) as well as for urban Alaska non-native patients (12.0%)
 - Followed for 2 years post confirmed eradication
- Reinfection rate for U.S. is estimated to be < 5% at 2 years
- Rural AI/AN at highest risk for reinfection

Colonized household members predictive for reinfection
Inconclusive benefit?

- Severe gastritis
 - w/o anemia
- Not NSAID or EtOH induced
- Lack of RCT
- Gastric cancer prevention
- Lack of quality RCT
- More long-term follow up needed

http://www.pathologyoutlines.com/topic/stomachacute gastritis.html

Lack of benefit?

- Many etiologies
 - GERD
 - IBD
- Gastric motility disorder
- Lack of symptomatic relief

http://www.pathologyoutlines.com/topic/stomachacute gastritis.html

Adult Empiric Therapy Recommendations in AN/AI

<table>
<thead>
<tr>
<th>Indication</th>
<th>Regimen</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Therapy</td>
<td>Metronidazole 500mg PO QID</td>
<td>14 days</td>
</tr>
<tr>
<td></td>
<td>Amoxicillin 1000mg PO BID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Omeprazole 20mg PO BID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bismuth Subsalicylate 524mg PO QID</td>
<td></td>
</tr>
<tr>
<td>*PCN Allergy</td>
<td>Metronidazole 500mg PO QID</td>
<td>14 days</td>
</tr>
<tr>
<td></td>
<td>Doxycycline 100mg PO BID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Omeprazole 20mg PO BID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bismuth Subsalicylate 524mg PO QID</td>
<td></td>
</tr>
</tbody>
</table>

*PCN Allergy: Patients with penicillin allergy

Resistance in H. pylori isolates from Alaska native persons

- Metronidazole
 - 42% (222/531) isolates had resistance
 - Women exhibited statistically significant more resistance than men (OR: 2.6; P < 0.0001)
 - No difference in urban vs. rural populations
 - Patients age 30 - 40 demonstrated the greatest resistance

- Amoxicillin
 - 2% (10/531) overall resistance
 - Varied year to year 0% - 4% (not significant)

Alaskan isolates resistance continued

- Clarithromycin
 - 30% (159/531) of isolates were resistant
 - Statistically higher resistance in woman (37%) than men (24%) (OR: 1.7; P = 0.001)
 - No statistical difference seen between age group, urban vs. rural, or referral institution

- Levofloxacin
 - 19% (30/155) of isolates are resistant
 - Urban areas isolates were approximately 5 times more likely to have resistance than rural areas
 - 38% vs. 13% (OR: 4.2; P = 0.005)
 - No differences in age group, gender, or referring institution

Alaskan isolates resistance continued

• Multidrug resistance
 • 15% (82/531) of isolates resistant to metronidazole and clarithromycin
 • Patients with metronidazole isolates were at higher risk for clarithromycin isolates than patients with metronidazole susceptible isolates (OR: 5.2; P = 0.002)
 • Females are more likely to be infected with metronidazole and clarithromycin resistant strains (OR: 2.4; P = 0.0004)

Resistance in H. pylori isolates from Alaska native persons

Past treatments with fluoroquinolones correlate with H. pylori levofloxacin resistance

H. Pylori resistance in North America

H. pylori cagA and vacA genotypes in Alaska

![Graph showing the distribution of cagA and vacA genotypes among Alaska natives.](image)

Clinical presentation correlates to genotype

<table>
<thead>
<tr>
<th>Clinical presentation</th>
<th>cagA +</th>
<th>vacA +</th>
<th>cagA -</th>
<th>vacA -</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esophagitis</td>
<td>0.000</td>
<td>0.274</td>
<td>0.920</td>
<td>0.645</td>
<td>0.057</td>
</tr>
<tr>
<td>Gastritis</td>
<td>0.000</td>
<td>0.274</td>
<td>0.920</td>
<td>0.645</td>
<td>0.057</td>
</tr>
<tr>
<td>Duodenal ulcer</td>
<td>0.000</td>
<td>0.274</td>
<td>0.920</td>
<td>0.645</td>
<td>0.057</td>
</tr>
</tbody>
</table>

Symptomatic Treatment

- **Adults**
 - Omeprazole 20 mg PO BID
 - Ranitidine 150mg PO BID

- **Pediatrics**
 - Ranitidine 5-10 mg/kg/day divided into PO BID

Special Populations

- **Pregnancy**
 - Delay treatment postpartum
 - Tetracyclines: Avoid in pregnancy
 - Bismuth: Avoid in pregnancy

- **Breastfeeding**
 - Avoid
 - Metronidazole
 - Bismuth
 - Levofloxacin

Recurrence/Treatment Failure

<table>
<thead>
<tr>
<th>Medication</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metronidazole 500mg PO QID</td>
<td>14 days</td>
</tr>
<tr>
<td>Doxycycline 100mg PO BID</td>
<td></td>
</tr>
<tr>
<td>Omeprazole 20mg PO BID</td>
<td></td>
</tr>
<tr>
<td>Bismuth-subalvolate 524mg PO QID</td>
<td></td>
</tr>
<tr>
<td>Amoxicillin 1000mg PO BID</td>
<td>14 days</td>
</tr>
<tr>
<td>Levofloxacin 500mg PO Daily</td>
<td></td>
</tr>
<tr>
<td>Omeprazole 20mg PO BID</td>
<td></td>
</tr>
</tbody>
</table>
Treatment success predictors

- Adherence
- Resistance
- Cigarette smoking
- Diabetes

Treatment success confirmatory testing

- ACG recommends testing 4 weeks post treatment
- 1-2 weeks off PPI therapy
- No specific test preferred
- Urea breath test
- Fecal antigen test
- Endoscopic tests

Learning Assessment
Which of the following patient specific factors are predictive of successful *H. pylori* eradication?

- poor adherence to medication regimen
- low prevalence of *H. pylori* colonization
- diabetes
- cigarette smoker

Learning Assessment
Which of the following should be consideration when recommending an *H. pylori* eradication regimen?

- national antibiotic resistance
- patients poor adherence to medication regimens
- prevalence of *H. pylori* infection in your practice area
- patients past use of a PPI

Learning Assessment
Which of the following increase the risk of a patient becoming infected with *H. pylori*?

- poor social economic standing
- household crowding (>1.5 people/room)
- high prevalence of *H. pylori*
- age < 10y/o
- all of the above

Learning Assessment
Which of the following patients should be referred to a specialist for further evaluation?

- A 75 y/o male who presents with dyspepsia that he has been experience on and off for several years.
- A 27 y/o male who presents with 2 days of N/V.
- A 62 y/o male who reports dyspepsia that started several weeks prior. Patient states he has never experienced these symptoms before.
- A 52 y/o female who reports using high doses of ibuprofen for treatment of her osteoarthritis